9,503 research outputs found

    Calibration biases in measurements of weak lensing

    Full text link
    As recently shown by Viola et al., the common (KSB) method for measuring weak gravitational shear creates a non-linear relation between the measured and the true shear of objects. We investigate here what effect such a non-linear calibration relation may have on cosmological parameter estimates from weak lensing if a simpler, linear calibration relation is assumed. We show that the non-linear relation introduces a bias in the shear-correlation amplitude and thus a bias in the cosmological parameters Omega_matter and sigma_8. Its direction and magnitude depends on whether the point-spread function is narrow or wide compared to the galaxy images from which the shear is measured. Substantial over- or underestimates of the cosmological parameters are equally possible, depending also on the variant of the KSB method. Our results show that for trustable cosmological-parameter estimates from measurements of weak lensing, one must verify that the method employed is free from ellipticity-dependent biases or monitor that the calibration relation inferred from simulations is applicable to the survey at hand.Comment: 5 pages, 3 figures, submitted to A&

    MARKOV DIFFUSIONS IN COMOVING COORDINATES AND STOCHASTIC QUANTIZATION OF THE FREE RELATIVISTIC SPINLESS PARTICLE

    Full text link
    We revisit the classical approach of comoving coordinates in relativistic hydrodynamics and we give a constructive proof for their global existence under suitable conditions which is proper for stochastic quantization. We show that it is possible to assign stochastic kinematics for the free relativistic spinless particle as a Markov diffusion globally defined on M4{\sf M}^4. Then introducing dynamics by means of a stochastic variational principle with Einstein's action, we are lead to positive-energy solutions of Klein-Gordon equation. The procedure exhibits relativistic covariance properties.Comment: 31 pages + 1 figure available upon request; Plain REVTe

    Dynamically Error-Corrected Gates for Universal Quantum Computation

    Get PDF
    Scalable quantum computation in realistic devices requires that precise control can be implemented efficiently in the presence of decoherence and operational errors. We propose a general constructive procedure for designing robust unitary gates on an open quantum system without encoding or measurement overhead. Our results allow for a low-level error correction strategy solely based on Hamiltonian engineering using realistic bounded-strength controls and may substantially reduce implementation requirements for fault-tolerant quantum computing architectures.Comment: 5 pages, 3 figure

    Weak gravitational lensing with DEIMOS

    Get PDF
    We introduce a novel method for weak-lensing measurements, which is based on a mathematically exact deconvolution of the moments of the apparent brightness distribution of galaxies from the telescope's PSF. No assumptions on the shape of the galaxy or the PSF are made. The (de)convolution equations are exact for unweighted moments only, while in practice a compact weight function needs to be applied to the noisy images to ensure that the moment measurement yields significant results. We employ a Gaussian weight function, whose centroid and ellipticity are iteratively adjusted to match the corresponding quantities of the source. The change of the moments caused by the application of the weight function can then be corrected by considering higher-order weighted moments of the same source. Because of the form of the deconvolution equations, even an incomplete weighting correction leads to an excellent shear estimation if galaxies and PSF are measured with a weight function of identical size. We demonstrate the accuracy and capabilities of this new method in the context of weak gravitational lensing measurements with a set of specialized tests and show its competitive performance on the GREAT08 challenge data. A complete C++ implementation of the method can be requested from the authors.Comment: 7 pages, 3 figures, fixed typo in Eq. 1

    Description of Quantum Entanglement with Nilpotent Polynomials

    Full text link
    We propose a general method for introducing extensive characteristics of quantum entanglement. The method relies on polynomials of nilpotent raising operators that create entangled states acting on a reference vacuum state. By introducing the notion of tanglemeter, the logarithm of the state vector represented in a special canonical form and expressed via polynomials of nilpotent variables, we show how this description provides a simple criterion for entanglement as well as a universal method for constructing the invariants characterizing entanglement. We compare the existing measures and classes of entanglement with those emerging from our approach. We derive the equation of motion for the tanglemeter and, in representative examples of up to four-qubit systems, show how the known classes appear in a natural way within our framework. We extend our approach to qutrits and higher-dimensional systems, and make contact with the recently introduced idea of generalized entanglement. Possible future developments and applications of the method are discussed.Comment: 40 pages, 7 figures, 1 table, submitted for publication. v2: section II.E has been changed and the Appendix on "Four qubit sl-entanglement measure" has been removed. There are changes in the notation of section IV. Typos and language mistakes has been corrected. A figure has been added and a figure has been replaced. The references have been update

    How does gas cool in DM halos?

    Get PDF
    In order to study the process of cooling in dark-matter (DM) halos and assess how well simple models can represent it, we run a set of radiative SPH hydrodynamical simulations of isolated halos, with gas sitting initially in hydrostatic equilibrium within Navarro-Frenk-White (NFW) potential wells. [...] After having assessed the numerical stability of the simulations, we compare the resulting evolution of the cooled mass with the predictions of the classical cooling model of White & Frenk and of the cooling model proposed in the MORGANA code of galaxy formation. We find that the classical model predicts fractions of cooled mass which, after about two central cooling times, are about one order of magnitude smaller than those found in simulations. Although this difference decreases with time, after 8 central cooling times, when simulations are stopped, the difference still amounts to a factor of 2-3. We ascribe this difference to the lack of validity of the assumption that a mass shell takes one cooling time, as computed on the initial conditions, to cool to very low temperature. [...] The MORGANA model [...] better agrees with the cooled mass fraction found in the simulations, especially at early times, when the density profile of the cooling gas is shallow. With the addition of the simple assumption that the increase of the radius of the cooling region is counteracted by a shrinking at the sound speed, the MORGANA model is also able to reproduce for all simulations the evolution of the cooled mass fraction to within 20-50 per cent, thereby providing a substantial improvement with respect to the classical model. Finally, we provide a very simple fitting function which accurately reproduces the cooling flow for the first ~10 central cooling times. [Abridged]Comment: 15 pages, accepted by MNRA

    Single-bit Feedback and Quantum Dynamical Decoupling

    Get PDF
    Synthesizing an effective identity evolution in a target system subjected to unwanted unitary or non-unitary dynamics is a fundamental task for both quantum control and quantum information processing applications. Here, we investigate how single-bit, discrete-time feedback capabilities may be exploited to enact or to enhance quantum procedures for effectively suppressing unwanted dynamics in a finite-dimensional open quantum system. An explicit characterization of the joint unitary propagators correctable by a single-bit feedback strategy for arbitrary evolution time is obtained. For a two-dimensional target system, we show how by appropriately combining quantum feedback with dynamical decoupling methods, concatenated feedback-decoupling schemes may be built, which can operate under relaxed control assumptions and can outperform purely closed-loop and open-loop protocols.Comment: 12 pages, 2 figure

    Dynamical Generation of Noiseless Quantum Subsystems

    Get PDF
    We present control schemes for open quantum systems that combine decoupling and universal control methods with coding procedures. By exploiting a general algebraic approach, we show how appropriate encodings of quantum states result in obtaining universal control over dynamically-generated noise-protected subsystems with limited control resources. In particular, we provide an efficient scheme for performing universal encoded quantum computation in a wide class of systems subjected to linear non-Markovian quantum noise and supporting Heisenberg-type internal Hamiltonians.Comment: 4 pages, no figures; REVTeX styl
    • …
    corecore